Web-Materials

 
List of Problems
1.1 The covalent bond 93
1.2 Ionic bonding and NaCl 93
1.3 Van der Waals bonding 94
1.4 Kinetic molecular theory 94
1.5 Vacuum deposition 94
1.6 Heat capacity 95
1.7 Thermal expansion 95
1.8 Thermal fluctuations 96
1.9 Electrical noise 96
1.10 Thermal activation 96
1.11 Diffusion in Si 97
1.12 Diffusion in SiO2 97
1.13 BCC and FCC crystals 97
1.14 BCC and FCC crystals 97
1.15 Planar and surface concentrations 97
1.16 Diamond and zinc blende 97
1.17 Zinc blende, NaCl, and CsCl 98
1.18 Crystallographic directions and planes 98
1.19 Si and SiO2 98
1.20 Vacancies 98
1.21 Pb-Sn solder 98
1.22 Pb-Sn solder 99
 
 
2.1 Electrical conduction 156
2.2 Electrical conduction 156
2.3 TCR and Matthiessen's rule 156
2.4 TCR of isomorphous alloys 156
2.5 Constantan 157
2.6 Experimental Nordheim coefficient for Pd in Ag 157
2.7 Electrical and thermal conductivity of In 157
2.8 Electrical and thermal conductivity of Ag 158
2.9 Mixture rules 158
2.10 Thermal conduction 158
2.11 Thermal resistance 158
2.12 Thermal resistance 158
2.13 The Hall effect 158
2.14 The strain gauge 159
2.15 Thermal coefficients of expansion and resistivity 160
2.16 Einstein relation and ionic conductivity 160
2.17 Skin effect 160
2.18 Temperature of a light bulb filament 161
 
 
3.1 Photons and photon flux 236
3.2 Human eye 236
3.3 Photoelectric effect 236
3.4 Photoelectric effect and quantum efficiency 237
3.5 Diffraction by X-rays and an electron beam 237
3.6 Heisenberg's uncertainity principle 237
3.7 Heisenberg's uncertainity principle 237
3.8 Tunneling 237
3.9 Electron impact excitation 238
3.10 Line spectra of hydrogenic atoms 238
3.11 X-rays and the Moseley relation 238
3.12 The He atom 239
3.13 Hund's rule 239
3.14 The HeNe laser 239
 
 
4.1 Phase of an atomic orbital 315
4.2 Molecular orbitals and atomic orbitals 315
4.3 Diamond and tin 315
4.4 Compound III-V Semiconductors 316
4.5 Compound II-V Semiconductors 316
4.6 Density of states for a two-dimensional electron gas 316
4.7 Fermi energy of Cu 316
4.8 Fermi energy and electron concentration 316
4.9 Temperature dependence of the Fermi level 316
4.10 X-ray emission spectrum from sodium 317
4.11 Thermoelectric effect and EF 317
4.12 The thermocouple equation 317
4.13 Thermionic emission 317
4.14 Field-assisted emission in MOS devices 318
4.15 Lattice waves and heat capacity 318
4.16 Thermal conductivity 318
4.17 Overlapping bonds 319
 
 
5.1 Bandgap and photodetection 406
5.2 Minimum conductivity 406
5.3 Compensation doping in Si 406
5.4 Temperature dependence of conductivity 406
5.5 GaAs 407
5.6 Doped GaAs 407
5.7 Degenerate semiconductor 408
5.8 Photoconductivity and speed 408
5.9 Hall effect in semiconductors 408
5.10 Compound semiconductor devices 408
5.11 Semiconductor strain gauge 409
5.12 Excess minority carrier concentration 409
5.13 Schottky junction 410
5.14 Schottky and ohmic contacts 410
5.15 Peltier effect and electrical contacts 410
5.16 Peltier coolers and figure of merit (FOM) 410
5.17 Seebeck coefficient of semiconductors and thermal drift in semiconductor devices 412
 
 
6.1 The pn junction 500
6.2 The Si pn junction 500
6.3 Junction capacitance of a pn junction 500
6.4 Temperature dependence of diode properties 500
6.5 Avalanche breakdown 501
6.6 Design of a pn junction diode 501
6.7 Minority carrier profiles (the hyperbolic functions) 501
6.8 The pnp bipolar transistor 501
6.9 Characteristics of an npn Si BJT 502
6.10 The JFET pinch-off voltage 503
6.11 The JFET 503
6.12 The JFET amplifier 504
6.13 The enhancement NMOSFET amplifier 504
6.14 Ultimate limits to device performance 504
6.15 LED output spectrum 505
6.16 LED output wavelength variations 505
6.17 Solar cell driving a load 505
6.18 Open circuit voltage 505
 
 
7.1 Relative permittivity and polarizability 579
7.2 Relative permittivity, bond strength, bandgap and refractive index 579
7.3 Dipolar liquids 580
7.4 Dipole moment in a nonuniform electric field 580
7.5 Ionic and electronic polarization 580
7.6 Electronic polarizability and KCl 581
7.7 Equivalent circuit of a polyester capacitor 581
7.8 Dielectric loss per unit capacitance 581
7.9 TCC of a polyester capacitor 581
7.10 Dielectric breakdown of gases and Pashen curves 582
7.11 Capacitor design 582
7.12 Dielectric breakdown in a coaxial cable 583
7.13 Piezoelectricity 584
7.14 Piezoelectric voltage coefficient 584
7.15 Piezoelectricity and the piezoelectric bender 584
7.16 Piezoelectricity 585
7.17 Pyroelectric detectors 585
7.18 Pyroelectric detectors 586
7.19 Spark generator design 587
 
 
8.1 Inductance of a long solenoid 654
8.2 Magnetization 654
8.3 Pauli spin paramagnetism 655
8.4 Ferromagmetism and the exchange interaction 655
8.5 Toroidal inductor and radio engineers toroidal inductance equation 655
8.6 A toroidal inductor 656
8.7 The transformer 656
8.8 Losses in a magnetic recording head 657
8.9 Design of a ferrite antena for an AM receiver 657
8.10 A permanent magnet with an air gap 658
8.11 A permanent magnet with an air gap 659
8.12 Weight, cost, and energy of a permanent magnet with an air gap 659
8.13 Superconductivity and the critical current density 659
8.14 Enterprising engineers in the high arctic building a superconducting inductor 660
8.15 Magnetic storage media 660
 
 
9.1 Refractive index and relative permittivity 720
9.2 Refractive index and bandgap 720
9.3 Temperature coefficient of refractive index 721
9.4 Dispersion (n versus l) in diamond 721
9.5 Dispersion (n versus l) in GaAs 721
9.6 Dispersion (n versus l) 721
9.7 Dispersion and diamond 722
9.8 Electric and magnetic fields in light 722
9.9 Reflection of light from a less dense medium (internal reflection) 722
9.10 Internal and external reflection at normal incidence 722
9.11 Antireflection coating 722
9.12 Complex refractive index 723
9.13 Complex refractive index 723
9.14 Evanescent wave 723
9.15 Quartz half-wave plate 723
9.16 Pockels cell modulator 723
A McGraw-Hill Book with Web Resources
Click here to go to the homepage of Web-Materials

Web-Materials
Materials and Devices Website for Scientists and Engineers

Serving scientists and engineers since 1996. Dedicated to continuing education.
Principles of Electronic Materials and Devices, Second Edition - S. O. Kasap